Jan Willem Klop

Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam
Department of Mathematics and Computer Science
Virije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam

Aart Middeldorp

Department of Mathematics and Computer Science
Virije Universiteit, de Boelelaan 1081, 1081 HV Amsterdam

A self-contained introduction is given to the Knuth-Bendix completion method
for equational specifications. After a short introduction to term rewriting sys-
tems and a presentation of some simple completion algorithms, we explain the
recent abstract approach of Bachmair, Dershowitz and Hsiang to the correct-
ness problem for such completion algorithms by means of proof orderings.

1. INTRODUCTION
Given the set of equational ax10ms = {0+x=x, (—x)+x =

(x +y)+z=x+(+2z)}1tis not an entlrely mwal task to denve the equa-
tion — 0 = 0. (See Example 3.5.) In a fam D.E. Knuth and his stu-
Bendix ad dressed the above quesuon

imilar ones by devising a
equations &£ or term rewriting
as the one generated by E, and with the
fficiently long computation of some expression ¢
accordmg to the oriented rules must lead to a unique ‘normal form’ of 7. Such
a term rewriting system #% is called complete, and in fact 1t provides a positive
solution for the validity problem or uniform word problem of the orginal
specification E.

Nowadays, there are more powerful Knuth-Bendix completion techniques,
such as the completion algorithm of Peterson & Stickel [14]). Also there are
several applications other than decidin alidity problem we mention
‘inductionless induction’ (see e.g. H lot [9]), anm
equations’ (Dershowitz [5]). Furtherm h recent ac nv1 ty concerns relat-
ing term rewriting completion techniques to the computational mechanism of
resolution in logic programmin 18 (ershowuz & Pialsted [6]), In an attempt to
integrate functional programming and logic programming.

In this paper we will not present these other applications and developments,
but instead focus on a very recent and elegant method of Bachmarr,
Dershowitz and Hsiang [2] to prove the correctness of large classes of ‘Knuth-
Bendix-like’ completion algorithms. The method centers around the concept of

dent P.

31

32

correctness proofs 0 erably Th
proof of an eg
mentary ap phca tions of the ms: e =8,
mt hout orientation. If a complete term rewriting system .% for E ES available
(i.e. & generates the same equality as E does, but elementary steps in % now
have a direction), then one can find a ‘rewriting proof’ or ‘rewrite proof’
t >1'—...—>r « «...«s having the form of two rewrite sequences of ¢,s lead-
ing to a common ‘reduct’ 7. Such rew: te proofs are considered preferable to
unoriented ones in E — because of the completeness of # 1t 1s decidable
whether a rewrite proof between t,s exists. For, con .- says that every
term has a umque normal form, to be reach 1}
Hen ce the dec1 sion algorithm 1s simple: compute the normal form
if and only if they coincide does there exist a (rewrite) proof of 7 =s.

in the course of transt ort! [m rewrite system

replaccd by some rewrite rules; so we have a pai R') where E'’UZ’ gen-
erates the same equality as E does In this situation a.n equality proof between
t,s may be pa.ru ally oriented, e.g.: t—>t'=t" «...=s5"— s, a proof where each
elementary step is either directed (— or «) or undirected (=). Now proofs
are ordered according to some complexity measure with the effect that equality
proofs which have more orentation as i a rewrite proof, are less complex.
'he rewnite proofs have least complexity. This notion of ‘proof ordering’ plays
a crucial role in proving the correctness of algorithms that are designed to
transform a set of equations E to a complete term rewriting system via inter-
mediate stages (E',%’).

Our paper 1s self-contained. After a short introduction to
specifications and term rewriting systems, we perform an 1
of the axioms for group theory (the well-known example of a successful com-
pletion in Knuth & Bendix [11]), and present some completion algorithms.

Finally, the ‘abstract’ approach via proof orderings is explained.

2. EQUATIONAL SPECIFICATIONS

DEFINITION 2.1. An equational specification 1s a pair (2, E). The signature or
alphabet 2. consists of a countably infinite set of variables x,, x,, x3, ..., also
denoted as x, y, z, x’, ..., and a non-empty set of function symbols F, G, ..., each
equipped with an ‘anty’, 1.e. the number of ‘arguments’ it is supposed to have.
Function symbols of arity 0 are called constants. E is a set of equations s = ¢
between terms s, £. The set of terms built from 2, notation 7(2), 1s the smallest
set such that xeT(2) for every variable xe€2, and if ¢,,...,7,€T(Z) then
F(ty,...,tn) €T(2), for FeXx with arity n (n = 0). Terms not containing vari-
ables are called ground terms or closed terms.

32

DEF ENE’HON 2.2. ubstitution o 1S a n
g (F (z ls-

O (z‘)) for ‘every n-ar; :

{O+x = X, (x)+.x-—-—-0 (x +y)+z -—-x+(y+z)}

n terms s, ?& T(E) 1s dem
(2, E) s =t or s =gt. Derivabili
tem of Table 1.

,E)rs =t fs =t ek
S, E)Fs =1
(2, E)rs%=1¢°
(L, E)rs1 =1, (2, E) s, =0
(2, EYr F(sy,...,8,) = F(t,,...,1,
S, E)rt=1
2, EYrt; =ty, (Z,E)F 1ty =15
(Z,E)Ft) =15

2, E)Fs =t
(Z,E)rt=s

the 1n! m'ence SYs-

for every substitution o

for every n-ary function symbol Fex

TABLE 1.

DEFINITION 2.5. Let > be a signature. A 2-algebra &/ 1s a set A together with

functions F¥: A" — A for every n-ary function symbol FeZ. (If F is a con-
stant then F¥eA4.)

EXAMPIE 2.6. Let (2, E,) be the specif cauon of Exam ple 2.3. The set
Ay = {a, b, ¢} with constant a and functions —' and +* defined by Table

2 15 a 2;-algebra (denoted by).

TABLE 2.

Let 2 be a signature and let o/ be a X-algebra. An equation s =1t between
terms of 7(2) is assigned a meaning in &/ by interpreting the function symbols
in s and ¢ via the corresponding functions in &£ Variables in s =¢ are (1mpl-
citly) universally quantified.

33

- ((x) x) = Q.

(X) “5" x =0 18 vai l d ,M*i or 1 31 ,@i 1S a M ode! of (“- X) + x =0 an

DEFINITION 2.8. A Z-algebra &/ is a model of a set of equations £ b
terms of T(E) notation & ; E, if every equation s = of E is valid m &£ '1h

variety defined an eq spemﬁcatlon (Z, E), notation Alg(2, E), 1s the
class of all h that o/ E. Instead of VialeAdlg(2, E) Lk F

where F 1s a set f equations between terms of T (2), we will write (2, E) k F.

DEFINITION 2.9. Let (2, E) be an equational
or uniform word problem for (2, E) 1s:

specification. The validity problem

Given an equation s =t between terms s, t€T(2), decide whether or
not (2, E)Es =1t

[he following theorem is the well-known completeness result of Birkhoft [4].

[HEOREM 2.10. Let (Z, E) be an equational specification. For all terms s, t e T(2)
we have (Z,E) v+ s =t ifandonly if (2, E)Es = 1.

A celebrated example of an equational specification with an unsolvable validity
problem is Combinatory Logic, the specification in Table 3 with a binary
operation ‘application’ (-) and constants S, K, I (see Barendregt [3]).

TABLE 3.

3. TERM REWRITING SYSTEMS

DEFINITION 3.1. A term rewriting system (TRS) 1s a pair (Z,%#). Here 2 1s a
signature and % is a set of pairs (s,7) with s, teT(2) subject to two con-
straints: (1) the left-hand side s 1s not a variable, (2) the vanables which occur
in the right-hand side ¢ also occur in s. Pairs (s,7z) will be called ‘rewriting
rules’ and will henceforth be written as s—t.

We usually write & instead of (2, %) under the assumption that 2 does not

contain function symbols which do not occur 1in the rewnting rules of % We

- ® & - r
will often give the rewriting rules a name, e.g. r and wnite 7 : s >z or s — .

DEFINITION 3.2. A context 1s a ‘term’ which contains a single occurrence of a
special symbol [J. We denote contexts by C[], Cy[},... . If C[] 1s a context

and teT(2) then C[#]eT(2) 1s the result of replacing the symbol [1 by ¢; ¢ 1s
said to be a subterm of C[t], notation ¢t C C[¢].

34

rise to reucm‘on steps, as
me context C[],

ther, — 5}'? deno tes the transitive closure of —g. If s —»5¢ we say that s

We wri if t ->4s. The Sy i etric closure of —g4 1S

by g (50, <> = —g U «g). The transitive-reflexive closure of <

1S Ca ed conversion; 1t will be denoted by =45. When no confusion can arise,
the subscript 92 will be dropped.

ExXAMPLE 3.5. By orienting the equations in Example 2.3 from left to right we
obtain the following set # of rewriting rules: {0 +x—x, (—x)+x—0,
(x +y)+z—-x+(y +2z)}. So we have the reduction (0 + (— 0)) + 0 —» O,
obtained from the sequence of reduction steps

O0O+(—0)+0-50+((—0)+0)>0+0->0.

In each step the underlined redex 1s rewritten. Note that although — O does
not reduce to 0, we do have — 0 =0, as shown by the following conversion,
which may serve to illustrate that even in sumple cases finding an equality
proof can be quite complicated.

—0«<0+4+(—-0) « (=(=(=0)+(=(=0)+(-0)
> (—(=(=0)+ (= (=0)+(—-0))
- () +t0 <= (=(=(=0))+ (O +0)
<~ () F(=(=0)+(=0)+0)
= (—(=(=0O))+(—(=0))+ (=0 +0)
= (= (= (=0 +{(=(=0)+0)
~ (=) +(—=-0))+0-0+0-0.

DEFINITION 3.6. Let % be a TRS. A term s is a normal for'm if there is no term
t such that s »4¢. A term s has a normal form if there 1s a normal form ¢ such
that s —>gt. X is weakly normalizing (WN) if every term has a normal form. #
1s strongly normalizing (SN) if there are no nfin te reduction sequences
o=l —=1l)—....

DEerFINITION 3.7. Let # be a TRS. & i1s weakly confluent or weakly Church-
Rosser (WCR) if for all terms s, ¢, 1, with s >g#; and s —g7,; we can find a
term 74 such that 1, =43 and t, =43 (see Figure 4(a)). Such a term 3 18

called a common reduct of t; and t,. Z is confluent or has the Church-Rosser

35

[t is a nice exercise, left to the reader, to find a TRS which 1s W

R. However, we do have the following extremely useful fact.

S, If # is WCR

WMAN [13]). Let Z be a T and SN then X is

In Section 5 we give a proof of this lemma illustrating the developments there.
Often one finds in the literature a different but equivalent defin

ition of
confluence, as suggested by the following proposition whose proof 1s easy.

PROPOSITION 3.9. Let % be a TRS. & is CR if and only if for all terms ty,1,
with t; =gt, we can find a term t3 such that t| —>»gil; «—g1;.

ExaMPLE 3.10. The TRS of Example 3.5 is not CR: — 0 and O are convertible
(— 0 = 0) but they have no common reduct because —0 and 0 are normal

forms.

PROPOSITION 3.11. Let & be a confluent TRS. Then X has unique normal forms,
i.e. if ny =gn, and ny, ny are normal forms then ny =n;.

PROOF. Immediate from Proposition 3.9. [

DEFINITION 3.12. A TRS with the properties SN and CR 1s called complete.

. KNUTH-BENDIX ALGORITHM: NAIVE APPROACH
We are interested in complete TRSs for the following reason. Let (2, E) be an

equational specification. If we can find a complete TRS % with fimitely many
rewriting rules such that

s=gqt o (C,E)rs=t (*)

36

Reduce s and t to their respective normal forms s’ and t'.

(2) Compare s’ andt’:s =gt if and only if s' =1".

ification (2, E) such that (*) holds. In this sec-

ential features of the completi on al gom hm first by
an mniormn mpletion of the - SP ecification
(21 , E1) of groups as in Exan 2.3. First we give the equations a ‘sensible’
orientation:

ri: 0+x —-x,ry: (— x)-l-x—->0 ri: (x +y)+z-—->x+(y+z)

(Note that the orientation in r,r; 1s forced, by the restrictions in Definition
3.1. As to the orientation of rj, the other direction is just as ‘sensible’.) How-
ever, these rules are not confluent: the r,-redex (—x) + x can be unified (after
a renaming of variables) with a non-variable subterm of the r;-redex
(x + y)+ z (the underlined subterm). The resulting term ((—x)+ x) + 2z 1s
subject to the two reductions:

Bendix completion algorithm tries to construct a com plete
24 for a g.wen equahon

(—x)+x)+z

/N

O0+z (—x)+(x+2z2)

The pair of reducts (0 + z, (—x) + (x + z)) 1s called a critical pair, since the
confluence property depends on the reduction possibilities of the terms 1n this

pair. Formally we have the following definition which at a first reading 1s not
easily digested.

DEFINITION 4.1. Let a— f and y— 4 be two rewrnting rules such that a 1s
unifiable (after variable renaming) with a non-vanable subterm of y. This
means that there exists a context C[|, a non-vanable term ¢ and a ‘most gen-
eral unifier’ o such that y=CJ[¢] and 1° =a°. (For the concept of ‘most gen-
eral unifier, see the contribution of M. Bezem in this i1ssue of the CWI Quar-
terly) The term Y°=C[t] can be reduced 1n two possible ways:
C[t]° - C[BF and y° — 6°. The pair of reducts (C[B]°, 0°) 1s called a criti-
cal pair obtained by the superposition of a—f on y—4. If a— B and y— 9
are the same rewriting rule, we furthermore require that a 1s unifiable with a
proper (i.e. a) non-variable subterm of y = a.

DEFINITION 4.2. A critical pair (s, t) 1s called convergent if s and ¢ have a
common reduct.

The critical pair (0 + z, (—x) + (x + z)) is not convergent: (—x) + (x + z)

37

(+ 2z, 0+ —l— z)) 1S convergentause 0 + (x T z) —> X + Z.
((x+@ +2z))+2z/, (x +y)+(z +z)) 1s also convergent:

x+@ptz)+z (x+y)+E+2z)

|

xt+({(y +z)+2z) 3

,\‘

x+y +(z+z))

So only Ehe pairr {0+ z, (—x) + (x + z)) i1s not yet convergent. By adopting
the new rule rs: (— x) +(x +2z) — z, the terms 0 +z and (—x) + (x + 2)
nave of course a common reduct. Note that the equality of z and
("""’ X) -+ (x + Z) 1S derﬁvable from I 1. The new TRS 1s still not confluent
because the critical pair we get by superposing ry on ry4

(—0)+ 0+ 2z2)

(—0)+ 2z z

1s not convergent. We add the rule r5: (—0)+z — z.
On ry.

(= (=x)) + ({(—x) + x)

(=(=x)+0 x

['he resulting critical pair ((— (—x)) + 0, x) cannot be reduced. So we add
therule rg: (—(—x))+0 — x. Now rg can be superposed on rj:

38

(—(—x)) T 0)+z

/N

x+z (—(—x))+ O+ 2z2)

[he term (— (—x)) + (0 + z) reduces to (—(—x)) +z. |
pair (x +z, (—(—x)) + (0 + z)) convergem, WE

(—(—x)) +0 — x +0. Therefore we replace r¢ by rg: x +0 — x. Super-
position of rg on rs yields

(—0)+0
rg/ \I‘S
— 0 0

This results in the new rule r¢: —0—0. Now rs 1s superfluous:

rqg I

(—0)+z > 0+z — z. If we superpose rg on r; we get

—(—x))+ 0

VA

—(—Xx) x+0

l,-s

X

This results 1in the new rule rjg: —(—x) > x. Now r; 1s superfluous:
Fe

(—(—x))+z - x +z. We can superpose rjy on rj:

(—(—=x)) + (—x)

x +(—x) 0

The critical pair (x + (—x), 0) 1s not convergent, so we add the rule
rin: x +(—x) — 0. ry; can be superposed on r3 In two ways:

39

(x +(—x)) +z (x+y)+(—(xty))

/N N

O+z x+({(—x)+2) x+ @ +(—&x+y)

[his results in the rules rp: x+({(—x)+z) >z
riz: x +@ +(—(x t+y))) — 0. Wecan superpose ry3 on r4:

(=x)+(x + @ + (= Fy))

a

(=x)+0 y+(=(x+y)

|

— X

To make the critical pair ((—x) + 0, y + (— (x + y))) convergent, we add the
rule ry: y+(—(x+y)—-> —x. Now ry; becomes superfluous:

ST T

x+ @ +(—(x+y))) > x+(—x) — 0. Superposition of r;4 on ry yields

(=) + @ +(—(x+y))

N\

(—y)+(—x) —(x+y)

We add the rule ris: —(x+y) > (—y)+(—x). Now ri4 1s no longer

needed: y +(—(x +y) -y +({(—y) +(—x)) > —x. At this moment the
TRS has only convergent critical pairs. The significance of this fact 1s stated in
the following lemma.

LEMMA 4.3 (HUET [7]). A TRS 2 is WCR if and only if all critical pairs are
convergent.

PrOOF SKETCH. If #1s WCR then in particular all cnitical pairs have a com-
mon reduct. Conversely, consider two diverging reduction steps. We distin-
guish three cases, depending on the relative position of the two rewritten

40

Ewo cases (disioin

al pair is conver gent. [:I

L o e

(a) disjoint redexes (b) nested redexes (c) overlapping redexes

FIGURE 5.

writing rules as in Table 6 is

—> X rg . — 0
: — 0 rio - "““(““X)
r3:(x+y)+z —>x+(y+z)r“:.x+(-—x)
rg: (—x)t+(x +2z) - z rp: x +({(—x)+ z)
rg: x +0 — X ris . — (x

VNN AR

X. 1s also SN; a proof of
Newman’s Lemm .
vahdity problem for th
[he following theorem of Kn

COROLLARY 4.4 (KNUTH & BENDIX [11]). Let 92 be a TR
is CR if and only if all critical pairs of % are convergent.

'he complete TRS £, of Table 6 was not obtained in a Very sys tematic way.
" - d without 2 ny stmtegy and especially the onenta-
nly guided by our intuition. For most of

here. According to
. We concl ude that ¢

the new rules there was no e.g. the rule
rq: (— x) + (x + z) — z cannot be reversed because z — (x)-+(x+2z)1s
riting rule; and the orientation of r¢: — 0 — 0 cannot be

41

. because the rule 0 — — 0 results n a TR
—(x +y) > (— y) + (—x) the other . irection was at least as 151b]
as n as even lengt ing. However, this would have led to disastrous

DEFINITION 4.5. A reducn On orden ng > as a we

X 1s SN , L hen — 5

Definition 4.5):

PROPOSITION 4.6. A TRS % is SN if and only if there is a reduction ordering >
such that o > f for every rewriting rule a — 8 of X.

[In Figure 7 a simple version of the Kn
presented. Note that no attempts are m implify the rules or to
remove superfluous rules. As to the reduction ordering > on 7(2) which is an
input to the algonthm, th '

s is a matter of ingenuity, or experimentation.

dix completion algorithm 1

n-e l X COIn 1 Eeﬁﬁn 21 gorﬁ i

Input: - an equational specification (2, E),

— a reduction ordering > on Ts (1.e. a program which computes >).
Output: — a complete TRS % such that

Vs, teTs s =xt & (2,E)rs =1

choose an equation s =t ek;

reduce s and 7 to respective normal forms s’ and ¢’ with respect to £;
if s"=1¢" then
E:=EFE—{s=1t}
else
if s">1t then
a:.:=s';
else if 1" >’
a:=t';
else
failure

fi;
= {P=Q|(P, Q) is a critical pair between the rules in #
and a — B};
RX:=RRU {a— B);
E:=EUCP—{s=t}

SUccess

FIGURE 7.
42

. 18 as three ossﬁb' 'ﬁes ﬂ
- (1.e. neither s > t nor ! > s) | he third
umtwe op emtors cann

Late succeess-
not be

Of terms S, I .

| T

TABLE 8.

If we still want to compute with the above system, we have to work modulo
the associativity and coms utau‘vny of the -+ -opemtor 1

does not consider terms individually, but equivalence classes of terms.

not go into any details because completion modulo equanons (hke
x+y =y+xand (x +y)+z = x+(y +z) is a very technical and com-
plicated matter (see e.g. Peterson & Stickel [14], Jouannaud & Kirchner [10]).

In case (1) the resulting TRS 2 1s complete. To show this requires a non-
trivial proof (for an ‘early’ example of such a proof see Huet [8]). In Section 5
we will give an abstract formulation of Knuth-Bendix completion, which
streamlines considerably this kind of correctness proofs.

The program of Figure 7 does not ‘simplify’ the rewriting rules themselves.
We will now show how such an optimization can be performed after termina-
tion of the program.

DEFINITION 4.7. A TRS £ is called irreducible if for every rewrnting rule a —» f8
of # the following holds: (1) B is a normal form with respect to %, (2) a 1s a
normal form with respect to £ — { a — B}.

The next theorem states that every complete TRS can be transformed into an
irreducible complete TRS.

THEOREM 4.8 (METIVIER [12]). Let £ be a complete TRS. Then we can find an
irreducible complete TRS R’ such that the relations =g and =g are the same.

PrOOF SKETCH. First we replace every rewriting rule a—B of # by a—/p’
where B’ is the normal form of B8 with respect to . The resulting TRS 1s %, .
Next, we leave away every rule a—f in % such that a can be reduced by
another rule o’ —f’ of %,. Result: #’. Now it is not hard to prove that #’ 1s
indeed complete and that =4 coincides with =g, by first proving the analo-
gous facts for) and %#. U

43

the effi c1ency of f
eren Uates betwecn a simp

Qutpur: - a complete irreducible TRS £ such that
Vs, teT(®) s=gt & (Z,E)rs=t

X.= O,

choose an equation s =t €E;
reduce s and ¢ to respective normal forms s’ and ¢’ with respect to Z;

Jailure

= {y—¥&|y—>8 e and § is a normal form of 6 with respect to
RU {a—B}};
CP := {P=Q|(P, Q) is a critical pair between the rules in # and

a— B};
E:=EUCPU{y=8|y—>8ec#and vy is reducible by a - 8} —

{s =1},
R.:=RU {a—> B} — {y—> 8|7y is reducible by a — B}

Success

We conclude this section with a theorem stating that the Knuth-Bendix com-
pletion algorithm, given an equational specification and a reduction ordering,
cannot generate two different complete irreducible TRSs. The proof 1s omutted.

AT d 9) ab OVE, ° differin
question 1s how to p

deliver upon
qua ty as ﬁ.he one of
cnples of such ai gom hms; an

1 eds to extract t € absu'act pr
ﬂus 1S done indeed by Bachmair, D : heir |
provin

derivation system where the objects are pairs (£, 2); each derivation step from
(E,) to (E’',2#") preserves equall

ity: =fgug coincides with =g/, 4+, and more-
over, along a sequence of denivations the actual proofs of equations ¢ =s will
be getting ‘better and better’, with a ‘rewnte proof’ as optimal proof format.
See Figure 10, where it 1s shown how E (that is the pair (£, @)) 1s gradually
transformed via pairs (E’,%#’) to a TRS 2 (that is the pair (&,%)); along the
way the two example proofs in the figure get more and more oriented until
they are in rewrite form. (Here direction 1s downward; horizontal steps are
without direction.)

There are two crucial 1deas in this recent approach. One 1s the concept of a
derivation system on pairs (E,%) as discussed above. The other 1s the concept
of ordering the proofs of equations s =t according to their degree of orienta-
tion. We will now proceed to a more formal explanation.

DEFINITION 5.1. Let (£, E) be an equational specification. If s =g ¢ by applica-
tion of exactly one equation in E we write s > So s<gt if and only if

there exist a context C[], a substitution ¢ and an equation ¥ =v (0r v = u) In
E such that s =C[u°] and t =C[v°].

DEFINITION 5.2. Let (2, E) be an equational specification and 2 a TRS with
31g11ature 3. A proof in E UZ of an equation s = ¢ between terms s, € T(2)
is a sequence of terms (so,...,5,) such that s =s, 5, =1, and for all 0 <i <n
we have s, _| <> S;, S;—1 —>@5; O §;—1 <aS;. A subproof of P =(sg,...,5,) 1S a
proof P’ =(s;,...,s;) with 0 <<i < j < n. The notation P[P’] means that P’ 1S a
subproof of P. A proof of the form sq —»4 5i «—a S, 1s called a rewrite proof.

45

fair derivation rewrite proofs

Fi1GURE 10.

By definition, P =(s) 1s a proof of s = s. In Figure 11 a proof 1s sketched.

FIGURE 11.

Knuth-Bendix completion aims at transforming every proof (sg,...,s,) Into a

46

(Gh)

Orientin £ an equation

idding an equation
(E, %)

iplifying an equation

(EU {s =1}, X)

| (C4) Deleting a trivial equation

(EU {s =5}, &)

(E, U {s —>t}) s>t

(C)
) Sin

(EU{s=1t},#) Usecgu-—ogt

(EU{u=1t},%) ds—ogu

(E, %)

The notation s =7 means s =¢ or ¢ =s; the symbol U denotes disjoint
union. Note that the inference system does not contain inference rules for
simplification of the rewriting rules.

DEFINITION 5.3. A (p0351b1y infinite) sequence (Eg, %), (E1,%,), ... 1s called a
BE- derz vation i (E i—1 , — 1) IS g (E is X,) f or all i > 0. e 5{5’ 1S the transi-
tive closure of = 4¢.)

[he statements in the following proposition are easily proved.

PROPOSITION 5.4. Let (E, R)wFge (E',X"). (1) If X is compatible with the
reduction ordering > then so is #'. (2) The relations =g g and =g g are
equal.

Let (E, &) wrge (E',%2"). Proposition 5.4(1) states that if 92 1s SN then so 1s
%’ and Proposition 5.4(2) states that the inference rules of #% are sound, 1.e.
the set of equations provable in (E, %) is the same as the set of equations
provable in (E’,%’).

Although the same equations s =t are provable in £ U and E" U %',
proofs in E' U %’ are in general ‘simpler’ than in £ U %. For example, by
adding equations to E (inference rule C,;) some subproofs s «gu —g? can be

replaced by s <z t. To formalize this aspect of the inference system #€¢ we
introduce orderings on proofs.

DEFINITION 5.5. A binary relation ~» on proofs is monotonic if Q ~» Q' 1mplies
that P[Q] ~ P[Q’] for all proofs P, Q and Q’. The relation ~» 1is stable if

P =Sy, ltjyerrst) 2> (St s Voot s 1) = O
imphes that

(C[5°Y),...,CLu],...,C[2°]) ~ (C[5%]),..., C[V],...,C[£°])

for all proofs P and Q, contexts C[] and substitutions o. A proof ordering 1s a
stable, monotonic, well-founded partial ordering on proofs.

47

at we have seen 1in e | , terature)
s,,) be a proof of th

m , . -
where — 5}7 denotes the multiset ex tensaon of — 5

ESOaSIaSﬂW@{SOaSl], Slmsz] Sl*-w S (I ---E 0)

T'he relation ~>g is a proof ordering.
tial ordering. This implies

that — # also is a well-founded partial ordering. The stability of ~>g follows
from the fact that — 4 is closed under substitutions and contexts. The mono-
tonicity of ~»45 1s a direct consequence of the definition of the multiset exten-
sion of an ordering. [

. Because Z is SN, —4 is a well-founded pas

PROPOSITION 5.7. If P =(sy,...,5,) 1s not a rewrite proof then there is a proof
P’ of the equation sy = s, such that P ~»4 P’.

PROOF. If P 1s not a rewrnite proof then P contains a subproof .
P 0 =35 —1 < S} =8, +1. Because X 1s WCR, s Je — 1 and s k +1 have a common
reduct, say s; — —-» t «— S +1 =P,. The complemty of Pyi1s[sr—1, Sk Sk +1])- It
i1s clear that s; --m u for every term uel||Pll. So P ~g Py. Let P’ be the

proof P[P,/ Pgy], 1.e. the proof P in which the subproof P, is replaced by P;.
The desired result follows from the monotonicity of ~sg. [

PROOF OF LEMMA 3.3. Consider diverging reductions 7 «—s —»1,. Let P be
the corresponding proof. If P is a rewrite proof (i.e. if t;=s or s =1t,) then
we are done. If P 1s not a rewrite proof then, according to Proposition 5.7, we
can find a proof P, of t; = ¢, such that P ~»4 P;. If P, 1s not a rewrite proof
then we can find a proof P, of t; =, such that P, ~»~4 P,. Because ~»g is a

well-founded ordering this process terminates in a rewrite proof of ¢; = ¢,.
conclude that 2is CR. [

The ordering which we use for completion is based on the given reduction ord-
ering > and on the elementary steps (—g, «— Or «g) in a proof.

DEFINITION 5.8. The complexity ||P]| of a proof P =(sy,...,s,) is the multiset
[c(s0,51),.,¢(8n~1,5,)] Where c(s;—1,s;), the complexity of an elementary
proof step, is defined by

[Si“'l] ifsi'“"l —>R 3,
c(Si—1,8) = [5;] if 5, -1 <5,

[$i—1, 8] if 5, -1 ©f ;.

43

exten smn of >

PROPOSITION 5.9.

PROPOSITION 5.11.

. We observe th

- if (EU (s =1}, R)&wFge (E, RU {5 >1}) by ap plication of

rule C, then (s <> () (5 = ,} t) ~ge (S —-WU {S__” t) because [s, t]>[s];

- i (E, X) inference rule C, with
u—gps and u --—wf then (s «gu —->@t) A g (s CSEU(s=1) r) because
[u] >[5, !}

- f(EU{s=t), B)Fge(EU {u= t} X) by a plication of inference
rule C; with s -4t then (s (s=1} 1) »ae (S >aUuEEpyy=n1),
because [s, t]>[s]and [s, t]>[»¢];

if (EU {s=s}, X)wge (E, #) by application of in

(s ©E (s =5)5) ~a¢ (5), because [s, s]>[].

ge (E',%). Let P be a proof 1

Figure 13):

NICTEnce

Now suppose (£,) =5
s =t. If P uses an equation of E or a rewriting ru
exists in £’ U %', th ding to the above observations and th
Oof ~g¢, We can replace such a proof step by a sim » '

Let (EO,%) (Ey, %), ... be a #édenvation. Proposition 5.11 states that
proofs in E; U %; are no more difficult than corresponding proofs in E; U %,
for all j > z e follow

ing condition implies that every proof in E; U %; of an

49

hich 1s not a rewrite proof, can be simplified Write
me j = i.
s K 1)a
?; for some i =0 then ¢ = d €Ey for some k = 0. (CP; 1s

13. Let (E 0: %), (E1,9%), ... be a fair #%- derzvatwn and let P
be aproofof s=tin E; UK. If P is not a rewm‘e proof then there exists a proof
P"in E; U%; of s =t such that P ~>gq P’, for some j = 1i.

PROOF. Let P be a proof (sg,...,s,) of s = ¢ in E; U . Suppose that P is not a

rewrite proof. We distinguish two cases:

(1) If s, _; &g s by application of u = v €E;, for some 1 <k < n, then the
equation ¥ =v will after some time be oriented into a rewriting rule,

implified, or deleted (because the derivation is fair). In all cases this

results in a sunpler proof of s;_; =5 I E; U%;, for some j>i.

Because ~»gy 1S a proof ordering compatible wnh % this leads to a
stmpler proof P’ in E; U %, of the equation s = t.

(2) If P does not contam any <>-steps then P contains a subproof

Po =581 < Sk =% Sk +1, for some 1<k <n. If the rewritten redexes
in the reduction steps s; _; <4 s and sy —4¢ sx+1 do not overlap (see.
Figure 5(a, b)) then there is a proof s; | —=»g u «—4 s; +; which is simpler
than Py. If the rewritten redexes in the reduction steps s; —; < 5; and
Sx —>a Sk +1 are overlapping (see Figure 5(c)) then s, _; = s, +; contains
an 1nstance of a critical pair ¢ = d that after some time will be computed
because the derivation is fair. In both cases P, can be replaced by a

simpler proof and thus there is proof P’ of s = ¢ which is simpler than P.
[]

DEFINITION 5.14. A completion procedure 1s a strategy for applymng the infer-
ence rules of #¢ to given mputs (Z, E) and >, in order to generate a %

derivation (Eo,.%) (Elagl) .. with (EO .%) — (E ﬂ)

Because a fair derivation may not be possible for certain inputs (Z, E) and >,
we allow for a completion procedure to fail. We say that a completion pro-
cedure 1s fair if it generates only fair derivations unless it fails.

DEFINITION 5.15. Let (Eo, %), (E, %), ... be a #%derivation. We denote the
limit of the TRSs %, by #° (#* = U X,).

THEOREM 5.16 (BACHMAIR, DERSHOWITZ & HSIANG [2]). Let C be a fair com-
pletion procedure that does not fail for certain inputs (2, E) and >.

(1) If s =gt then C will generate a pair (E;, %) such that s and t have a com-
mon reduct in X,.

(2) A% is a complete TRS.

50

a¢ P, for some i; =1. If P
oroof P, of s =t in E; U such
rEwi te pI‘Oof P, =85 —>»> U <« of s=tmkE i U .@; , for some i,.

1gure 7 1s a completion

complete accord - to the above theoren
It 1s posmble to extend the inference system HE with
ting the simplif cauon of the rewritin

nference rules incor-
rules as performed in the more
in] 1gure 9. It 1s also possible to
groups, rmalism. We ref er 1o [1] and [2] for further details.

ACHMAIR and N. DersHOowIiTZ (1987). Completion for rewrnting
modulo a congruence. Proceedin gs of the 2nd International Conference on
Rewriting Techmques and Applications, Bordeaux, France, Lecture Notes 1n
Computer Science 256, Springer-Verlag, 192-203.

MAIR, N. DersHOWITZ and J. HsSIANG (1986). Orderings for
equatlonal proofs. Proceedings of the IEEE Symposium on Logic in Com-
P uter Science, Cambridge, M assachussetts, 346-357.

3. H.P. BARENDREGT (1584). Th mbda Calculus - Its Syntax and Seman-

tics, 2nd edi tion, North-Holland.

4. G. BIRKHOFF (1935). On the structure of abstract algebras. Proceedings
of the Cambridge Philosophical Society 31, 433-454

5. N. DersHOWITZ, (1985). Computing with rewrite systems. JInformation
and Control 65, 122-157.

6. N. DersHOWITZ and D.A. PLAISTED (1985). Logic programming cum
applicative programming. Proceedings of the IEEE International Sympo-
sium on Logic Programming, Boston, 54-66.

7. G. Huet (1980). Confluent reductions: abstract properties and applica-
tions to term rewriting systems. Journal of the Association for Computing
Machinery 27(4), 197-821.

8. G. Huer (1981). A complete proof of correctness of the K
completion algorithm.
11-21.

9. G. Huer and J.-M. Hurror (1982). Inductive proofs for equational

theories with constructors. Journal of Computer and Systems Sciences
25(2), 239-266.

2.

uth-Bendix
Journal of Computer and Systems Sciences 23(1),

51

P erg non Press, 263-297.

SOm Q) uatlo thones
Machi mery 28, 233-264.

4 3(2) 1939 43 A
S’HC EL (1981) Complete sets of reductions for

nd P. BENDIX (190) Simple word
. LEECH (ed.). Comp

writing systems produced by the
m. Information Processing Letters 16,

definition of

Journal of the Association for Computing

52

