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A self-contained introduction is given to the Knuth-Bendix completion method
for equational specifications. After a short introduction to term rewriting sys-
tems and a presentation of some simple completion algorithms, we explain the
recent abstract approach of Bachmair, Dershowitz and Hsiang to the correct-
ness problem for such completion algorithms by means of proof orderings.

1. INTRODUCTION
Given the set of equational ax10ms = {0+x=x, (—x)+x =

(x +y)+z=x+( +2z)}1tis not an entlrely mwal task to denve the equa-
tion — 0 = 0. (See Example 3.5.) In a fam D.E. Knuth and his stu-
Bendix ad dressed the above quesuon

imilar ones by devising a
equations &£ or term rewriting
as the one generated by E, and with the
fficiently long computation of some expression ¢
accordmg to the oriented rules must lead to a unique ‘normal form’ of 7. Such
a term rewriting system #% is called complete, and in fact 1t provides a positive
solution for the validity problem or uniform word problem of the orginal
specification E.

Nowadays, there are more powerful Knuth-Bendix completion techniques,
such as the completion algorithm of Peterson & Stickel [14]). Also there are
several applications other than decidin alidity problem we mention
‘inductionless induction’ (see e.g. H lot [9]), anm
equations’ (Dershowitz [5]). Furtherm h recent ac nv1 ty concerns relat-
ing term rewriting completion techniques to the computational mechanism of
resolution in logic programmin 18 (ershowuz & Pialsted [6]), In an attempt to
integrate functional programming and logic programming.

In this paper we will not present these other applications and developments,
but instead focus on a very recent and elegant method of Bachmarr,
Dershowitz and Hsiang [2] to prove the correctness of large classes of ‘Knuth-
Bendix-like’ completion algorithms. The method centers around the concept of

dent P.
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correctness proofs 0 erably Th
proof of an eg
mentary ap phca tions of the ms: e =8,
mt hout orientation. If a complete term rewriting system .% for E ES available
(i.e. & generates the same equality as E does, but elementary steps in % now
have a direction), then one can find a ‘rewriting proof’ or ‘rewrite proof’
t >1'—...—>r « «...«s having the form of two rewrite sequences of ¢,s lead-
ing to a common ‘reduct’ 7. Such rew: te proofs are considered preferable to
unoriented ones in E — because of the completeness of # 1t 1s decidable
whether a rewrite proof between t,s exists. For, con .- says that every
term has a umque normal form, to be reach 1}
Hen ce the dec1 sion algorithm 1s simple: compute the normal form
if and only if they coincide does there exist a (rewrite) proof of 7 =s.

in the course of transt ort! [m rewrite system

replaccd by some rewrite rules; so we have a pai R') where E'’UZ’ gen-
erates the same equality as E does In this situation a.n equality proof between
t,s may be pa.ru ally oriented, e.g.: t—>t'=t" «...=s5"— s, a proof where each
elementary step is either directed (— or «) or undirected (=). Now proofs
are ordered according to some complexity measure with the effect that equality
proofs which have more orentation as i a rewrite proof, are less complex.
'he rewnite proofs have least complexity. This notion of ‘proof ordering’ plays
a crucial role in proving the correctness of algorithms that are designed to
transform a set of equations E to a complete term rewriting system via inter-
mediate stages (E',%’).

Our paper 1s self-contained. After a short introduction to
specifications and term rewriting systems, we perform an 1
of the axioms for group theory (the well-known example of a successful com-
pletion in Knuth & Bendix [11]), and present some completion algorithms.

Finally, the ‘abstract’ approach via proof orderings is explained.

2. EQUATIONAL SPECIFICATIONS

DEFINITION 2.1. An equational specification 1s a pair (2, E). The signature or
alphabet 2. consists of a countably infinite set of variables x,, x,, x3, ..., also
denoted as x, y, z, x’, ..., and a non-empty set of function symbols F, G, ..., each
equipped with an ‘anty’, 1.e. the number of ‘arguments’ it is supposed to have.
Function symbols of arity 0 are called constants. E is a set of equations s = ¢
between terms s, £. The set of terms built from 2, notation 7(2), 1s the smallest
set such that xeT(2) for every variable xe€2, and if ¢,,...,7,€T(Z) then
F(ty,...,tn) €T(2), for FeXx with arity n (n = 0). Terms not containing vari-
ables are called ground terms or closed terms.
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DEF ENE’HON 2.2. ubstitution o 1S a n
g (F (z ls-

O (z‘ )) for ‘every n-ar; :

{O+x = X, ( x)+.x-—-—-0 (x +y)+z -—-x+(y+z)}

n terms s, ?& T(E) 1s dem
(2, E ) s =t or s =gt. Derivabili
tem of Table 1.

,E)rs =t fs =t ek
S, E)Fs =1
(2, E)rs%=1¢°
(L, E)rs1 =1, (2, E) s, =0
(2, EYr F(sy,...,8,) = F(t,,...,1,
S, E)rt=1
2, EYrt; =ty, (Z,E)F 1ty =15
(Z,E)Ft) =15

2, E)Fs =t
(Z,E)rt=s

the 1n! m'ence SYs-

for every substitution o

for every n-ary function symbol Fex

TABLE 1.

DEFINITION 2.5. Let > be a signature. A 2-algebra &/ 1s a set A together with

functions F¥: A" — A for every n-ary function symbol FeZ. (If F is a con-
stant then F¥eA4.)

EXAMPIE 2.6. Let (2, E,) be the specif cauon of Exam ple 2.3. The set
Ay = {a, b, ¢} with constant a and functions —' and +* defined by Table

2 15 a 2;-algebra (denoted by ).

TABLE 2.

Let 2 be a signature and let o/ be a X-algebra. An equation s =1t between
terms of 7(2) is assigned a meaning in &/ by interpreting the function symbols
in s and ¢ via the corresponding functions in &£ Variables in s =¢ are (1mpl-
citly) universally quantified.
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- ((x) x) = Q.

( X) “5" x =0 18 vai l d ,M*i or 1 31 ,@i 1S a M ode! of (“- X) + x =0 an

DEFINITION 2.8. A Z-algebra &/ is a model of a set of equations £ b
terms of T(E) notation & ; E, if every equation s = of E is valid m &£ '1h

variety defined an eq spemﬁcatlon (Z, E), notation Alg(2, E), 1s the
class of all h that o/ E. Instead of VialeAdlg(2, E) Lk F

where F 1s a set f equations between terms of T (2), we will write (2, E) k F.

DEFINITION 2.9. Let (2, E) be an equational
or uniform word problem for (2, E) 1s:

specification. The validity problem

Given an equation s =t between terms s, t€T(2), decide whether or
not (2, E)Es =1t

[he following theorem is the well-known completeness result of Birkhoft [4].

[HEOREM 2.10. Let (Z, E) be an equational specification. For all terms s, t e T(2)
we have (Z,E) v+ s =t ifandonly if (2, E)Es = 1.

A celebrated example of an equational specification with an unsolvable validity
problem is Combinatory Logic, the specification in Table 3 with a binary
operation ‘application’ (-) and constants S, K, I (see Barendregt [3]).

TABLE 3.

3. TERM REWRITING SYSTEMS

DEFINITION 3.1. A term rewriting system (TRS) 1s a pair (Z,%#). Here 2 1s a
signature and % is a set of pairs (s,7) with s, teT(2) subject to two con-
straints: (1) the left-hand side s 1s not a variable, (2) the vanables which occur
in the right-hand side ¢ also occur in s. Pairs (s,7z) will be called ‘rewriting
rules’ and will henceforth be written as s—t.

We usually write & instead of (2, %) under the assumption that 2 does not

contain function symbols which do not occur 1in the rewnting rules of % We

- ® & - r
will often give the rewriting rules a name, e.g. r and wnite 7 : s >z or s — .

DEFINITION 3.2. A context 1s a ‘term’ which contains a single occurrence of a
special symbol [J. We denote contexts by C[ ], Cy[ },... . If C[] 1s a context

and teT(2) then C[#]eT(2) 1s the result of replacing the symbol [1 by ¢; ¢ 1s
said to be a subterm of C[t], notation ¢t C C[¢].
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rise to reucm‘on steps, as
me context C[ ],

ther, — 5}'? deno tes the transitive closure of —g. If s —»5¢ we say that s

We wri if t ->4s. The Sy i etric closure of —g4 1S

by g (50, <> = —g U «g). The transitive-reflexive closure of <

1S Ca ed conversion; 1t will be denoted by =45. When no confusion can arise,
the subscript 92 will be dropped.

ExXAMPLE 3.5. By orienting the equations in Example 2.3 from left to right we
obtain the following set # of rewriting rules: {0 +x—x, (—x)+x—0,
(x +y)+z—-x+(y +2z)}. So we have the reduction (0 + (— 0)) + 0 —» O,
obtained from the sequence of reduction steps

O0O+(—0)+0-50+((—0)+0)>0+0->0.

In each step the underlined redex 1s rewritten. Note that although — O does
not reduce to 0, we do have — 0 =0, as shown by the following conversion,
which may serve to illustrate that even in sumple cases finding an equality
proof can be quite complicated.

—0«<0+4+(—-0) « (=(=(=0)+(=(=0)+(-0)
> (—(=(=0)+ (= (=0)+(—-0))
- () +t0 <= (=(=(=0))+ (O +0)
<~ () F(=(=0)+(=0)+0)
= (—(=(=0O))+(—(=0))+ (=0 +0)
= (= (= (=0 +{(=(=0)+0)
~ (=) +(—=-0))+0-0+0-0.

DEFINITION 3.6. Let % be a TRS. A term s is a normal for'm if there is no term
t such that s »4¢. A term s has a normal form if there 1s a normal form ¢ such
that s —>gt. X is weakly normalizing (WN) if every term has a normal form. #
1s strongly normalizing (SN) if there are no nfin te reduction sequences
o=l —=1l)—....

DEerFINITION 3.7. Let # be a TRS. & i1s weakly confluent or weakly Church-
Rosser (WCR) if for all terms s, ¢, 1, with s >g#; and s —g7,; we can find a
term 74 such that 1, =43 and t, =43 (see Figure 4(a)). Such a term 3 18

called a common reduct of t; and t,. Z is confluent or has the Church-Rosser
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[t is a nice exercise, left to the reader, to find a TRS which 1s W

R. However, we do have the following extremely useful fact.

S, If # is WCR

WMAN [13]). Let Z be a T and SN then X is

In Section 5 we give a proof of this lemma illustrating the developments there.
Often one finds in the literature a different but equivalent defin

ition of
confluence, as suggested by the following proposition whose proof 1s easy.

PROPOSITION 3.9. Let % be a TRS. & is CR if and only if for all terms ty,1,
with t; =gt, we can find a term t3 such that t| —>»gil; «—g1;.

ExaMPLE 3.10. The TRS of Example 3.5 is not CR: — 0 and O are convertible
(— 0 = 0) but they have no common reduct because —0 and 0 are normal

forms.

PROPOSITION 3.11. Let & be a confluent TRS. Then X has unique normal forms,
i.e. if ny =gn, and ny, ny are normal forms then ny =n;.

PROOF. Immediate from Proposition 3.9. [

DEFINITION 3.12. A TRS with the properties SN and CR 1s called complete.

. KNUTH-BENDIX ALGORITHM: NAIVE APPROACH
We are interested in complete TRSs for the following reason. Let (2, E) be an

equational specification. If we can find a complete TRS % with fimitely many
rewriting rules such that

s=gqt o (C,E)rs=t (*)
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Reduce s and t to their respective normal forms s’ and t'.

(2) Compare s’ andt’:s =gt if and only if s' =1".

ification (2, E) such that (*) holds. In this sec-

ential features of the completi on al gom hm first by
an mniormn mpletion of the - SP ecification
(21 , E1) of groups as in Exan 2.3. First we give the equations a ‘sensible’
orientation:

ri: 0+x —-x,ry: (— x)-l-x—->0 ri: (x +y)+z-—->x+(y+z)

(Note that the orientation in r,r; 1s forced, by the restrictions in Definition
3.1. As to the orientation of rj, the other direction is just as ‘sensible’.) How-
ever, these rules are not confluent: the r,-redex (—x) + x can be unified (after
a renaming of variables) with a non-variable subterm of the r;-redex
(x + y)+ z (the underlined subterm). The resulting term ((—x)+ x) + 2z 1s
subject to the two reductions:

Bendix completion algorithm tries to construct a com plete
24 for a g.wen equahon

(—x)+x)+z

/N

O0+z (—x)+(x+2z2)

The pair of reducts (0 + z, (—x) + (x + z)) 1s called a critical pair, since the
confluence property depends on the reduction possibilities of the terms 1n this

pair. Formally we have the following definition which at a first reading 1s not
easily digested.

DEFINITION 4.1. Let a— f and y— 4 be two rewrnting rules such that a 1s
unifiable (after variable renaming) with a non-vanable subterm of y. This
means that there exists a context C[ |, a non-vanable term ¢ and a ‘most gen-
eral unifier’ o such that y=CJ[¢] and 1° =a°. (For the concept of ‘most gen-
eral unifier, see the contribution of M. Bezem in this i1ssue of the CWI Quar-
terly) The term Y°=C[t] can be reduced 1n two possible ways:
C[t]° - C[BF and y° — 6°. The pair of reducts ( C[ B]°, 0°) 1s called a criti-
cal pair obtained by the superposition of a—f on y—4. If a— B and y— 9
are the same rewriting rule, we furthermore require that a 1s unifiable with a
proper (i.e.  a) non-variable subterm of y = a.

DEFINITION 4.2. A critical pair (s, t) 1s called convergent if s and ¢ have a
common reduct.

The critical pair (0 + z, (—x) + (x + z)) is not convergent: (—x) + (x + z)
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( + 2z, 0+ —l— z)) 1S convergentause 0 + (x T z) —> X + Z.
((x+@ +2z))+2z/, (x +y)+(z +z)) 1s also convergent:

x+@ptz)+z (x+y)+E+2z)

|

xt+({(y +z)+2z) 3

,\‘

x+y +(z+z))

So only Ehe pairr {0+ z, (—x) + (x + z)) i1s not yet convergent. By adopting
the new rule rs: (— x) +(x +2z) — z, the terms 0 +z and (—x) + (x + 2)
nave of course a common reduct. Note that the equality of z and
("""’ X ) -+ (x + Z) 1S derﬁvable from I 1. The new TRS 1s still not confluent
because the critical pair we get by superposing ry on ry4

(—0)+ 0+ 2z2)

(—0)+ 2z z

1s not convergent. We add the rule r5: (—0)+z — z.
On ry.

(= (=x)) + ({(—x) + x)

(=(=x)+0 x

['he resulting critical pair ((— (—x)) + 0, x) cannot be reduced. So we add
therule rg: (—(—x))+0 — x. Now rg can be superposed on rj:
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(—(—x)) T 0)+z

/N

x+z (—(—x))+ O+ 2z2)

[he term (— (—x)) + (0 + z) reduces to (—(—x)) +z. |
pair (x +z, (—(—x)) + (0 + z)) convergem, WE

(—(—x)) +0 — x +0. Therefore we replace r¢ by rg: x +0 — x. Super-
position of rg on rs yields

(—0)+0
rg/ \I‘S
— 0 0

This results in the new rule r¢: —0—0. Now rs 1s superfluous:

rqg I

(—0)+z > 0+z — z. If we superpose rg on r; we get

—(—x))+ 0

VA

—(—Xx) x+0

l,-s

X

This results 1in the new rule rjg: —(—x) > x. Now r; 1s superfluous:
Fe

(—(—x))+z - x +z. We can superpose rjy on rj:

(—(—=x)) + (—x)

x +(—x) 0

The critical pair (x + (—x), 0) 1s not convergent, so we add the rule
rin: x +(—x) — 0. ry; can be superposed on r3 In two ways:
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(x +(—x)) +z (x+y)+(—(xty))

/N N

O+z x+({(—x)+2) x+ @ +(—&x+y)

[his results in the rules rp: x+({(—x)+z) >z
riz: x +@ +(—(x t+y))) — 0. Wecan superpose ry3 on r4:

(=x)+(x + @ + (= Fy))

a

(=x)+0 y+(=(x+y)

|

— X

To make the critical pair ((—x) + 0, y + (— (x + y))) convergent, we add the
rule ry: y+(—(x+y)—-> —x. Now ry; becomes superfluous:

ST T

x+ @ +(—(x+y))) > x+(—x) — 0. Superposition of r;4 on ry yields

(=) + @ +(—(x+y))

N\

(—y)+(—x) —(x+y)

We add the rule ris: —(x+y) > (—y)+(—x). Now ri4 1s no longer

needed: y +(—(x +y) -y +({(—y) +(—x)) > —x. At this moment the
TRS has only convergent critical pairs. The significance of this fact 1s stated in
the following lemma.

LEMMA 4.3 (HUET [7]). A TRS 2 is WCR if and only if all critical pairs are
convergent.

PrOOF SKETCH. If #1s WCR then in particular all cnitical pairs have a com-
mon reduct. Conversely, consider two diverging reduction steps. We distin-
guish three cases, depending on the relative position of the two rewritten
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Ewo cases ( disioin

al pair is conver gent. [:I

L o e

(a) disjoint redexes (b) nested redexes (c) overlapping redexes

FIGURE 5.

writing rules as in Table 6 is

—> X rg . — 0
: — 0 rio - "““(““X)
r3:(x+y)+z —>x+(y+z)r“:.x+(-—x)
rg: (—x)t+(x +2z) - z rp: x +({(—x)+ z)
rg: x +0 — X ris . — (x

VNN AR

X. 1s also SN; a proof of
Newman’s Lemm .
vahdity problem for th
[he following theorem of Kn

COROLLARY 4.4 (KNUTH & BENDIX [11]). Let 92 be a TR
is CR if and only if all critical pairs of % are convergent.

'he complete TRS £, of Table 6 was not obtained in a Very sys tematic way.
" - d without 2 ny stmtegy and especially the onenta-
nly guided by our intuition. For most of

here. According to
. We concl ude that ¢

the new rules there was no e.g. the rule
rq: (— x) + (x + z) — z cannot be reversed because z — ( x)-+(x+2z)1s
riting rule; and the orientation of r¢: — 0 — 0 cannot be
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. because the rule 0 — — 0 results n a TR
—(x +y) > (— y) + (—x) the other . irection was at least as 151b]
as n as even lengt ing. However, this would have led to disastrous

DEFINITION 4.5. A reducn On orden ng > as a we

X 1s SN , L hen — 5

Definition 4.5):

PROPOSITION 4.6. A TRS % is SN if and only if there is a reduction ordering >
such that o > f for every rewriting rule a — 8 of X.

[In Figure 7 a simple version of the Kn
presented. Note that no attempts are m implify the rules or to
remove superfluous rules. As to the reduction ordering > on 7(2) which is an
input to the algonthm, th '

s is a matter of ingenuity, or experimentation.

dix completion algorithm 1

n-e l X COIn 1 Eeﬁﬁn 21 gorﬁ i

Input: - an equational specification (2, E),

— a reduction ordering > on Ts (1.e. a program which computes > ).
Output: — a complete TRS % such that

Vs, teTs s =xt & (2,E)rs =1

choose an equation s =t ek;

reduce s and 7 to respective normal forms s’ and ¢’ with respect to £;
if s"=1¢" then
E:=EFE—{s=1t}
else
if s">1t then
a:.:=s';
else if 1" >’
a:=t';
else
failure

fi;
= {P=Q|(P, Q) is a critical pair between the rules in #
and a — B};
RX:=RRU {a— B);
E:=EUCP—{s=t}

SUccess

FIGURE 7.
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. 18 as three ossﬁb' 'ﬁes ﬂ
- (1.e. neither s > t nor ! > s) | he third
umtwe op emtors cann

Late succeess-
not be

Of terms S, I .

| T

TABLE 8.

If we still want to compute with the above system, we have to work modulo
the associativity and coms utau‘vny of the -+ -opemtor 1

does not consider terms individually, but equivalence classes of terms.

not go into any details because completion modulo equanons (hke
x+y =y+xand (x +y)+z = x+(y +z) is a very technical and com-
plicated matter (see e.g. Peterson & Stickel [14], Jouannaud & Kirchner [10]).

In case (1) the resulting TRS 2 1s complete. To show this requires a non-
trivial proof (for an ‘early’ example of such a proof see Huet [8]). In Section 5
we will give an abstract formulation of Knuth-Bendix completion, which
streamlines considerably this kind of correctness proofs.

The program of Figure 7 does not ‘simplify’ the rewriting rules themselves.
We will now show how such an optimization can be performed after termina-
tion of the program.

DEFINITION 4.7. A TRS £ is called irreducible if for every rewrnting rule a —» f8
of # the following holds: (1) B is a normal form with respect to %, (2) a 1s a
normal form with respect to £ — { a — B}.

The next theorem states that every complete TRS can be transformed into an
irreducible complete TRS.

THEOREM 4.8 (METIVIER [12]). Let £ be a complete TRS. Then we can find an
irreducible complete TRS R’ such that the relations =g and =g are the same.

PrOOF SKETCH. First we replace every rewriting rule a—B of # by a—/p’
where B’ is the normal form of B8 with respect to . The resulting TRS 1s %, .
Next, we leave away every rule a—f in % such that a can be reduced by
another rule o’ —f’ of %,. Result: #’. Now it is not hard to prove that #’ 1s
indeed complete and that =4 coincides with =g, by first proving the analo-
gous facts for ) and %#. U
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the effi c1ency of f
eren Uates betwecn a simp

Qutpur: - a complete irreducible TRS £ such that
Vs, teT(®) s=gt & (Z,E)rs=t

X.= O,

choose an equation s =t €E;
reduce s and ¢ to respective normal forms s’ and ¢’ with respect to Z;

Jailure

= {y—¥&|y—>8 e and § is a normal form of 6 with respect to
RU {a—B}};
CP := {P=Q|(P, Q) is a critical pair between the rules in # and

a— B};
E:=EUCPU{y=8|y—>8ec#and vy is reducible by a - 8} —

{s =1},
R.:=RU {a—> B} — {y—> 8|7y is reducible by a — B}

Success

We conclude this section with a theorem stating that the Knuth-Bendix com-
pletion algorithm, given an equational specification and a reduction ordering,
cannot generate two different complete irreducible TRSs. The proof 1s omutted.




AT d 9) ab OVE, ° differin
question 1s how to p

deliver upon
qua ty as ﬁ.he one of
cnples of such ai gom hms; an

1 eds to extract t € absu'act pr
ﬂus 1S done indeed by Bachmair, D : heir |
provin

derivation system where the objects are pairs (£, 2); each derivation step from
(E, ) to (E’',2#") preserves equall

ity: =fgug coincides with =g/, 4+, and more-
over, along a sequence of denivations the actual proofs of equations ¢ =s will
be getting ‘better and better’, with a ‘rewnte proof’ as optimal proof format.
See Figure 10, where it 1s shown how E (that is the pair (£, @)) 1s gradually
transformed via pairs (E’,%#’) to a TRS 2 (that is the pair (&,%)); along the
way the two example proofs in the figure get more and more oriented until
they are in rewrite form. (Here direction 1s downward; horizontal steps are
without direction.)

There are two crucial 1deas in this recent approach. One 1s the concept of a
derivation system on pairs (E,%) as discussed above. The other 1s the concept
of ordering the proofs of equations s =t according to their degree of orienta-
tion. We will now proceed to a more formal explanation.

DEFINITION 5.1. Let (£, E) be an equational specification. If s =g ¢ by applica-
tion of exactly one equation in E we write s &gt So s<gt if and only if

there exist a context C[ ], a substitution ¢ and an equation ¥ =v (0r v = u) In
E such that s =C[u°] and t =C[v°].

DEFINITION 5.2. Let (2, E) be an equational specification and 2 a TRS with
31g11ature 3. A proof in E UZ of an equation s = ¢ between terms s, € T(2)
is a sequence of terms (so,...,5,) such that s =s, 5, =1, and for all 0 <i <n
we have s, _| <> S;, S;—1 —>@5; O §;—1 <aS;. A subproof of P =(sg,...,5,) 1S a
proof P’ =(s;,...,s;) with 0 <<i < j < n. The notation P[P’] means that P’ 1S a
subproof of P. A proof of the form sq —»4 5i «—a S, 1s called a rewrite proof.
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fair derivation rewrite proofs

Fi1GURE 10.

By definition, P =(s) 1s a proof of s = s. In Figure 11 a proof 1s sketched.

FIGURE 11.

Knuth-Bendix completion aims at transforming every proof (sg,...,s,) Into a
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(Gh)

Orientin £ an equation

idding an equation
(E, %)

iplifying an equation

(EU {s =1}, X)

| (C4) Deleting a trivial equation

(EU {s =5}, &)

(E, U {s —>t}) s>t

(C)
) Sin

(EU{s=1t},#) Usecgu-—ogt

(EU{u=1t},%) ds—ogu

(E, %)

The notation s =7 means s =¢ or ¢ =s; the symbol U denotes disjoint
union. Note that the inference system does not contain inference rules for
simplification of the rewriting rules.

DEFINITION 5.3. A (p0351b1y infinite) sequence (Eg, %), (E1,%,), ... 1s called a
BE- derz vation i (E i—1 , — 1) IS g (E is X, ) f or all i > 0. e 5{5’ 1S the transi-
tive closure of = 4¢.)

[he statements in the following proposition are easily proved.

PROPOSITION 5.4. Let (E, R)wFge (E',X"). (1) If X is compatible with the
reduction ordering > then so is #'. (2) The relations =g g and =g g are
equal.

Let (E, &) wrge (E',%2"). Proposition 5.4(1) states that if 92 1s SN then so 1s
%’ and Proposition 5.4(2) states that the inference rules of #% are sound, 1.e.
the set of equations provable in (E, %) is the same as the set of equations
provable in (E’,%’).

Although the same equations s =t are provable in £ U and E" U %',
proofs in E' U %’ are in general ‘simpler’ than in £ U %. For example, by
adding equations to E (inference rule C,;) some subproofs s «gu —g? can be

replaced by s <z t. To formalize this aspect of the inference system #€¢ we
introduce orderings on proofs.

DEFINITION 5.5. A binary relation ~» on proofs is monotonic if Q ~» Q' 1mplies
that P[ Q] ~ P[ Q’] for all proofs P, Q and Q’. The relation ~» 1is stable if

P =Sy, ltjyerrst) 2> (St s Voot s 1) = O
imphes that

(C[5°Y),...,CLu],...,C[2°]) ~ (C[5%]),..., C[V],...,C[ £°])

for all proofs P and Q, contexts C[ ] and substitutions o. A proof ordering 1s a
stable, monotonic, well-founded partial ordering on proofs.
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at we have seen 1in e | , terature)
s,,) be a proof of th

m , . -
where — 5}7 denotes the multiset ex tensaon of — 5

ESOaSIaSﬂW@{SOaSl], Slmsz] Sl*-w S (I ---E 0)

T'he relation ~>g is a proof ordering.
tial ordering. This implies

that — # also is a well-founded partial ordering. The stability of ~>g follows
from the fact that — 4 is closed under substitutions and contexts. The mono-
tonicity of ~»45 1s a direct consequence of the definition of the multiset exten-
sion of an ordering. [

. Because Z is SN, —4 is a well-founded pas

PROPOSITION 5.7. If P =(sy,...,5,) 1s not a rewrite proof then there is a proof
P’ of the equation sy = s, such that P ~»4 P’.

PROOF. If P 1s not a rewrnite proof then P contains a subproof .
P 0 =35 —1 < S} =8, +1. Because X 1s WCR, s Je — 1 and s k +1 have a common
reduct, say s; — —-» t «— S +1 =P,. The complemty of Pyi1s[sr—1, Sk Sk +1])- It
i1s clear that s; --m u for every term uel||Pll. So P ~g Py. Let P’ be the

proof P[P,/ Pgy], 1.e. the proof P in which the subproof P, is replaced by P;.
The desired result follows from the monotonicity of ~sg. [

PROOF OF LEMMA 3.3. Consider diverging reductions 7 «—s —»1,. Let P be
the corresponding proof. If P is a rewrite proof (i.e. if t;=s or s =1t,) then
we are done. If P 1s not a rewrite proof then, according to Proposition 5.7, we
can find a proof P, of t; = ¢, such that P ~»4 P;. If P, 1s not a rewrite proof
then we can find a proof P, of t; =, such that P, ~»~4 P,. Because ~»g is a

well-founded ordering this process terminates in a rewrite proof of ¢; = ¢,.
conclude that 2is CR. [

The ordering which we use for completion is based on the given reduction ord-
ering > and on the elementary steps (—g, «— Or «g) in a proof.

DEFINITION 5.8. The complexity ||P]| of a proof P =(sy,...,s,) is the multiset
[c(s0,51),.,¢(8n~1,5,)] Where c(s;—1,s;), the complexity of an elementary
proof step, is defined by

[Si“'l] ifsi'“"l —>R 3,
c(Si—1,8) = [ 5;] if 5, -1 <5,

[$i—1, 8] if 5, -1 ©f ;.

43



exten smn of >

PROPOSITION 5.9.

PROPOSITION 5.11.

. We observe th

- if (EU (s =1}, R)&wFge (E, RU {5 >1}) by ap plication of

rule C, then (s <> () (5 = ,} t) ~ge (S —-WU {S__” t) because [s, t]>[s];

- i (E, X ) inference rule C, with
u—gps and u --—wf then (s «gu —->@t) A g (s CSEU(s=1) r) because
[u] >[5, !}

- f(EU{s=t), B)Fge(EU {u= t} X) by a plication of inference
rule C; with s -4t then (s (s=1} 1) »ae (S >aUuEEpyy=n1),
because [s, t]>[s]and [s, t]>[»¢];

if (EU {s=s}, X)wge (E, #) by application of in

(s ©E (s =5)5) ~a¢ (5), because [s, s]>[].

ge (E',%). Let P be a proof 1

Figure 13):

NICTEnce

Now suppose (£, ) =5
s =t. If P uses an equation of E or a rewriting ru
exists in £’ U %', th ding to the above observations and th
Oof ~g¢, We can replace such a proof step by a sim » '

Let (EO,%) (Ey, %), ... be a #édenvation. Proposition 5.11 states that
proofs in E; U %; are no more difficult than corresponding proofs in E; U %,
for all j > z e follow

ing condition implies that every proof in E; U %; of an
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hich 1s not a rewrite proof, can be simplified Write
me j = i.
s K 1 )a
?; for some i =0 then ¢ = d €Ey for some k = 0. (CP; 1s

13. Let (E 0: %), (E1,9%), ... be a fair #%- derzvatwn and let P
be aproofof s=tin E; UK. If P is not a rewm‘e proof then there exists a proof
P"in E; U%; of s =t such that P ~>gq P’, for some j = 1i.

PROOF. Let P be a proof (sg,...,s,) of s = ¢ in E; U . Suppose that P is not a

rewrite proof. We distinguish two cases:

(1) If s, _; &g s by application of u = v €E;, for some 1 <k < n, then the
equation ¥ =v will after some time be oriented into a rewriting rule,

implified, or deleted (because the derivation is fair). In all cases this

results in a sunpler proof of s;_; =5 I E; U%;, for some j>i.

Because ~»gy 1S a proof ordering compatible wnh % this leads to a
stmpler proof P’ in E; U %, of the equation s = t.

(2) If P does not contam any <>-steps then P contains a subproof

Po =581 < Sk =% Sk +1, for some 1<k <n. If the rewritten redexes
in the reduction steps s; _; <4 s and sy —4¢ sx+1 do not overlap (see.
Figure 5(a, b)) then there is a proof s; | —=»g u «—4 s; +; which is simpler
than Py. If the rewritten redexes in the reduction steps s; —; < 5; and
Sx —>a Sk +1 are overlapping (see Figure 5(c)) then s, _; = s, +; contains
an 1nstance of a critical pair ¢ = d that after some time will be computed
because the derivation is fair. In both cases P, can be replaced by a

simpler proof and thus there is proof P’ of s = ¢ which is simpler than P.
[]

DEFINITION 5.14. A completion procedure 1s a strategy for applymng the infer-
ence rules of #¢ to given mputs (Z, E) and >, in order to generate a %

derivation (Eo,.%) (Elagl) .. with (EO .%) — (E ﬂ)

Because a fair derivation may not be possible for certain inputs (Z, E) and >,
we allow for a completion procedure to fail. We say that a completion pro-
cedure 1s fair if it generates only fair derivations unless it fails.

DEFINITION 5.15. Let (Eo, %), (E, %), ... be a #%derivation. We denote the
limit of the TRSs %, by #° (#* = U X,).

THEOREM 5.16 (BACHMAIR, DERSHOWITZ & HSIANG [2]). Let C be a fair com-
pletion procedure that does not fail for certain inputs (2, E) and >.

(1) If s =gt then C will generate a pair (E;, %) such that s and t have a com-
mon reduct in X,.

(2) A% is a complete TRS.
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a¢ P, for some i; =1. If P
oroof P, of s =t in E; U such
rEwi te pI‘Oof P, =85 —>»> U <« of s=tmkE i U .@; , for some i,.

1gure 7 1s a completion

complete accord - to the above theoren
It 1s posmble to extend the inference system HE with
ting the simplif cauon of the rewritin

nference rules incor-
rules as performed in the more
in ] 1gure 9. It 1s also possible to
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